Appendix H

Part 5



developed in Bursian 2003 (NOAEL and LOAEL). This assessment was previously
sent to U.S. EPA (Viacom 2004) and is included here as Appendix B.

The TRVs used to assess toxicity for kingfishers are all from other bird species.
Gallinaceous birds, such as chickens and pheasants are among the most sensitive
birds with respect to exposures to PCBs and other dioxin-like chemicals. The
assessment fails to evaluate recent scientific evidence that kingfishers may be much
less sensitive than any of these birds. This evidence is found in the Housatonic field
studies (Henning and Brooks, 2003). At the Housatonic site, where PCB levels in
fish are one to two orders of magnitude greater than they are at this site, there was no
noticeable impact to breeding success of native kingfishers near the site. While the
original PCBs disposed of at the Housatonic site may be different from those
disposed of at Neal’s Landfill, it has been established that the TEQs are the most
accurate predictor of toxicity to fish eating birds. The TEQs of the Housatonic fish
when evaluated as mg TEQs/kg PCBs are similar, but higher, than those found at the
Neal’s Landfill site. This large discrepancy between predicted risk to reproduction
and actual field measured reproduction shows how relying on a single line of
evidence such as theoretical hazard quotients can lead to improper conclusions.

There is a growing body of evidence that suggests that it is inappropriate to apply
chicken based TRVs to piscivorous birds for TEQs. For example, studies over the last
several years by a number of researchers indicate that predatory birds, such as bald
eagles, ospreys, and kingfishers are much more resistant to the effects of dioxins and
related chemicals (Woodford et. al., 1998; Kennedy et. al. 2003; Henning and Brooks,
2003). Elliott and Harris (2002) noted the following based on their extensive review
of data for piscivorous birds:

o In summary, the results of this study are consistent with the emerging
data from both field and laboratory studies which indicate that
predatory birds are not particularly sensitive to some of the effects of
TCDD. Assessments based on field studies on eagles (Elliott et al.,
1996) and ospreys (Woodford et al., 1998) and the comparative egg
injection work with kestrels, indicate that raptors are rather insensitive
fo some of the toxic and biochemical effects of TCDD and PCBs.
Elliot et al., (1996) suggested a no-effect level (based on hepatic
CYP1A in hatchlings) of 100 pg/g TEQs and a lowest effect level of
303 pg/g.

In summary, the raptor TEQ egg LOAEL ranges conservatively from 210 pg/g to 303
pg/g based on enzyme induction, which is not typically an endpoint chosen for an
ERA since it is not an ecologically relevant endpoint and occurs at much lower
concentrations than effects on reproduction and development. Furthermore, since
these values are based on the induction of enzymes, it is likely that effect levels in
predatory birds for ecologically relevant endpoints, such as reproductive and
developmental endpoints, are much greater. If these TRVs were used in the U.S.
EPA’s ERA, then the predicted risks to piscivorous birds, such as kingfishers, would
be substantially less, and if other TRVs were available for such raptors based on
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endpoints such as reproductive/developmental endpoints, the predicted risk would
again be much less.

e (CBS has previously provided U.S. EPA TRVs for the Great Blue Heron (Viacom
2004) and this analysis is provided again in Appendix A. Since the Great Blue Heron
is also a predatory piscivore, the TRVs derived for the Great Blue Heron are likely
more representative for the Kingfisher. CBS therefore recommends that the TRVs in
Viacom 2004 for the Great Blue Heron be used for the kingfisher rather than those
the U.S. EPA has derived based on Gallinaceous birds. If this substitution were
made, the calculated hazard quotients would drop to about those shown for the
“LOAEL” kingfisher case in U.S. EPA’s risk assessment. Those hazard quotients
approximate 1 based on the 2003 data set and show little risk to avian piscivores.

Response 53: Eight sets of TRVs are used in the FERA, the comments pertain to 2 of
these 8 sets. The TRVs in question are based on meta-analysis of multiple toxicity
studies, a procedure used to derive mink dietary no effect (500 ng total PCB/kg diet) and
low effect (600 pg/kg) TRVs, and kingbird ingestion dose no effect (400 pg total
PCB/kggw-d) and low effect (500 pg/kgsw-d) TR Vs (a second set of kingbird PCB
ingestion TRVs used in the FERA are not based on meta-analysis). The remaining 5 sets
of TRVs in the FERA are derived through other approaches.

The methods used for the meta-analysis are not novel. The approach is based on
Leonards, et al. (1995), who used meta-analysis to interpolate mink tissue-based PCB
TRVs on a dioxin-equivalent (TEQ) basis. The method used in the FERA for
normalizing data from multiple studies to combine them into a single meta-analysis is the
same as used by Leonards, et al. (1995). Other examples of the same normalization
approach for meta-analysis of ecotoxicological studies include Isnard, et al. (2001),
Tanaka and Nakanishi (2001), and Calabrese (2005). The main differences between the
methods in the FERA and Leonard, et al. (1995) are minor ones made for site-specific
objectives. The FERA meta-analysis TRVs are derived for PCBs on an individual
Aroclor basis, instead of TEQs; exposure to mink is quantified on a dietary basis, instead
of tissue accumulation; a different regression method is used (adapted from U.S. EPA
guidance on effluent toxicity testing); and, consistent with Superfund practice, TRVs are
based on the range between no adverse effects and the onset of adverse effects, while the
Leonards, et al. (1995) TRVs are based on a high incidence of adverse effects (affecting
50 % of exposed mink).

Following a suggestion of CBS (then Viacom), an uncertainty analysis has been
performed for the two sets of meta-analysis TRVs. The procedure, recommended by Dr.
John Giesy, ENTRIX, consultant to CBS, is to remove data points individually from the
combined data set to assess the effect of incompatibilities between studies and treatments
on the TRV interpolation. The results show that the TRVs for PCB dietary exposure to
mink, and PCB ingestion dose to birds, are robust to data variability in the upper range of
exposures, but not in the lower range of exposures. In other words, the “actual” TRVs are
unlikely to be higher than the values used in the FERA-the analysis recommended by
CBS resulted in no more than a 20 % increase in the calculated TRVs, and mostly less
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than 10 % changes related to variability in the upper range of exposures, but the “actual”
TRVs might be lower than derived for the FERA—the procedure resulted in 35 to 90 %
decreases in calculated TRVs related to variability in the lower range of exposures. This
implies that risk calculations based on these TRVs are unlikely to overestimate risk, but
the possibility that risk might be underestimated cannot be ruled out.

Meta-analysis refers to techniques for combining the results of multiple studies into a
single analysis. CBS incorrectly states that the TRVs derived through meta-analysis are
extrapolated, but the meta-analytical method in the FERA is restricted solely to
interpolation within the combined data sets, and extrapolation beyond the bounds of the
empirical data is not allowed. Incompatibilities between studies because of differences in
study design or other factors are potentially important limitations of meta-analysis and,
therefore, were evaluated as part of the meta-analysis performed for the ERA.

As discussed in the ERA, multiple studies with several species of mammals show that the
reproductive toxicity of PCBs increases with length of exposure or with number of
generations continuously exposed.

CBS incorrectly states that Brunstrém et al. (2001) evaluated only two doses. Brunstrém
et al. (2001) evaluated three doses (control, A50 low, and AS50 high), and reported results
separately for PCB exposures over 1 and 2 breeding seasons (6 and 18 months,
respectively). For the meta-analysis, the single breeding season results were
supplemented with one additional high dose reported by Kihistrom, et al. (1992), for a
total of 4 doses. There are sufficient data to derive 2 TRVs (no effect TRV and low
effect TRV) for each of the two exposure durations.

The mink PCB TRYV is based on the number of live kits per mated female, which, as a
measure of reproductive capacity, is an ecologically relevant endpoint. Reproductive

failure in ranch mink fed Great Lakes fish was an early indication that contamination

(later shown to be PCBs) in the Great Lakes posed a health risk to mammals.

Brunstrém et al. (2001) reported whelping rate and litter size of live kits for both 6- and
18-month exposures, from which live kits per mated female can be calculated. For the
18-month exposure AS50 high treatment, whelping rate and live litter size decreased by 58
and 55 %, respectively, compared to the control treatment, both of which are statistically
significant differences. However, for the same dose with 6-months exposure, there were
no more than 5 % differences in whelping rate and live litter size with the control
treatment, which are not statistically discernible differences. The sole difference is
exposure duration. The combined effect on whelping rate and live litter size resulted in
more than a 4-fold decrease in the number of live kits per mated female after 18-months
exposure compared to 6 months exposure in the A50 high treatment, for an overall 80 %
reduction in live kits per mated female compared to the control treatment at the end of the
experiment.

As CBS points out, kit survival at 2 weeks was not reported for the 6-month exposure
groups, so this endpoint cannot be used to compare the relative effects of 6- and 18-
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month exposures in the Brunstrém et al. (2001) study. However, comparison of kit
survival in long-term and short-term exposure groups is possible in the Restum, et al.
(1998) study.

Kit survival is inversely related to exposure duration in the Restum, et al. (1998) study.
A dietary dose of 1.0 ppm PCB resulted in statistically decreased kit survival with 6-
months exposure, but a dietary dose of 0.5 ppm PCB resulted in statistically decreased
kit survival with 16- to 18-months exposure (at kit 3 and 6 weeks age) or with exposure
over 2 consecutive generations (at birth, 3 and 6 weeks).

A site-specific mink feeding study was performed for the Housatonic River Superfund
site (Bursian, et al. 2006). The dietary concentration of the treatment resulting in
decreased kit survival (3.7 mg PCB/kg diet) is higher than the LOAEC TRVs used at
other Superfund sites, but resulted in high kit mortality (54 %). The investigators
performed probit regression analysis to calculate the dietary concentrations lethal to 20 %
and 10 % of kits (LCyo and LC,, respectively) and the associated 95 % confidence
intervals (CI). The LCy is 1 mg PCB/kg diet (CI: 0.5 — 1.9 mg/kg), and the LC;( 15 0.2
mg PCB/kg diet (CI: 0.03 — 0.5 mg/kg) (rounded values based on Bursian, et al. 2006).
The Bursian, et al. (2006) LC, differs from the FERA LOAEC by less than a factor of 2,
reasonably consistent with the observed difference in toxicity between PCB exposure
over 1 breeding season versus exposure over 2 breeding seasons. In contrast, the
Bursian, et al. (2006) LC¢ is lower (more conservative) than the FERA NOAEC.
However, the 95 % confidence intervals for the Bursian, et al. (2006) LCy and LCyo
include the values of the LOAEC (0.6 mg PCB/kg diet) and NOAEC (0.5 mg/kg) TRVs,
respectively, used in the FERA.

CBS included the relative potency for only one of the treatments in the Bursian study in
their comment, which is anomalously high compared to the other four exposure treatment
groups (relative potencies from 9.3 to 10.3 mg TEQ/kg PCB). The average relative
potency of all five of the exposure treatment groups in Bursian, et al. (2006) is 11.2 mg
TEQ/kg PCB, which is lower (less toxic) than any of the data from Neal’s Landfill
reported in CBS Table 1. The mean relative potency of the Bursian, et al. (2006) study is
less than one-half of the mean relative potency for all species collected from Richland
Creek at Vernal Pike in May and November 2003 (CBS Table 1), and is only one-third of
the relative potency of all species collected at that location by CBS in November 2005
(32.7 mg TEQ/kg PCB). The mean relative potency of the Bursian, et al. (2006) study is
approximately two-thirds of the mean relative potency for all species collected from
Conard’s Branch in May and November 2003 (CBS Table 1), but is less than one-half of
the relative potency of creek chub collected at that location by CBS in November 2005
(25.2 mg TEQ/kg PCB). Contrary to CBS’s comment that TRVs based on Bursian, et al.
(2006) would be “likely conservative” for Neal’s Landfill, comparisons of mean relative
potencies provide additional evidence that the mixture of PCBs released to the
Housatonic River is much less toxic than the mixture released to Conard’s Branch and
Richland Creek. This means that the PCB TRVs for the Housatonic River site are not
adequately protective for the Neal’s Landfill site.
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With regards to the comment on probit analysis, apparently CBS does not consider the
Bursian, et al. (2006) study to be the “highest quality, most relevant study from which
TRVs can be determined” when the analyses do not conform with CBS’s objectives. The
Bursian, et al. (2006) LOAEC resulted in high kit mortality by 6 weeks, which
corresponds to nearly a 50 % decrease in the number of live kits at 6 weeks per mated
female compared to the control treatment. This is a severe effect, therefore, the onset of
adverse effects is expected to occur at some lower dose. The probit analysis performed
by Bursian, et al. (2006) is an approach for calculating the dietary PCB exposure
associated with the onset of adverse effects on kit mortality. It is obvious from longer-
term studies with mink (and other mammals exposed to PCBs), that the results of
toxicological studies involving exposures over a single breeding season will
underestimate the reproductive toxicity of PCBs associated with exposures over more
than one breeding season or to consecutive generations.

Chicken are known to be sensitive to PCBs, and chicken PCB toxicity data are used to
derive one set of TRVs to represent higher sensitivity to PCBs, but a second set of TRVs
based on doves is also used in the FERA to represent middle sensitivity to PCBs, which
brackets uncertainty over the sensitivity of kingfisher to PCBs. It would be inappropriate
to solely assess potential risk to kingfisher based only on TRVs for insensitive species
when the sensitivity of kingfisher is not known.

The mink ERA submitted by CBS demonstrates that risk to mink may be avoided by use
of TRVs based on the single-breeding season exposure study performed by Bursian, et al.
(2006). As discussed above, the assertion that the relative potency of the feed used in the
Bursian, et al. (2006) mink study is equivalent to that in fish near Neal’s Landfill is based
on incomplete and selective use of the Bursian, et al. (2006) data (only the relative
potency of the one treatment with anomalously high potency is reported by CBS). Use of
the mean relative potency of all of the Bursian, et al. (2006) treatments shows much
lower relative potency compared to fish near Neal’s Landfill, with as much as a 2- to 3-
fold difference. Bursian, et al. (2006) also reported LC;¢ and LCy9 TRVs, which bracket
the probable onset of adverse effects. Use of these TRVs result in LCo HQs of 8-9 for
mean exposure, and 10-12 for UCL exposure; and LCy HQs of 2 for mean exposure, and
3 for UCL exposure.

Data from a dioxin study with pheasant is used for dose-based TEQ TRVs. Although
pheasant are also a gallinaceous species, pheasant is less sensitive to dioxin than chicken.
One of CBS’s consultants described pheasant as “one of the more tolerant species” to
dioxin-like effects (Giesy, et al. 1995, see also Bowerman, et al. 1995).

The kingfisher field study performed at the Housatonic River site is limited by several
shortcomings in design, including an insufficiently broad exposure gradient, lack of a
control or reference population, and a method of evaluation that is subject to confounding
because the results of the field study are compared to that of a single study from the
literature for a different location. According to the Housatonic River ERA (USACE/U.S.
EPA 2004):

66



“The belted kingfisher study results do not definitively support the conclusions of
low risk because the data collected in the study are limited. There are several
conclusions drawn by the authors that are not strongly supported by the
information presented in the report. The conclusion that the kingfisher population
is consistent with the quality of habitat present is speculative. ... It introduces
significant uncertainties to conclude that the Housatonic River kingfishers fall
within the range reported for other kingfisher populations when only one study is
referenced.”

“... EPA was not provided with an opportunity to review standard operating
procedures or protocols prior to receiving the study report ...”

“There were, however, several shortcomings that resulted in uncertainties
regarding the conclusions of the study. No information was provided regarding
nest search intensity, important endpoints like clutch size and hatching success
were not measured, and there were too few visits to the nests during the
reproductive cycle. These shortcomings limit the ability to draw rigorous
conclusions from the field study results.”

“The lack of reference area and small sample size (i.e., n=6) with the statistics
used is considered a major source of uncertainty in the kingfisher field study.”

“The approach used to estimate dose in the belted kingfisher study had a number
of shortcomings. ... The lack of reference area concentrations further compounds
uncertainties in the dose gradient. Thus, there are major uncertainties in the dose
gradient achieved by this approach, as it is likely too narrow to detect a significant
dose-response relationship and the dose associated with a given nest is unknown.”

“The kingfisher field study had limited ability to detect differences in
reproductive success.”

For these reasons, the Housatonic kingfisher field study is not considered an adequate
study for reducing uncertainty over the relative sensitivity of kingfisher to PCBs.

CBS’s comment on the differences between TEQ toxicity in chicken and “piscivorous
birds” is based primarily on effects on raptors (eagles, osprey, kestrels), the sole
exception, the aforementioned Housatonic kingfisher field study, is addressed above.

The comments regarding raptors are not germane because kingfisher is not a closely
related to raptors. Assuming kingfisher sensitivity to PCBs is similar to that of raptors is
as uncertain as assuming it is similar to that of chicken. The ERA assesses risk to
kingfisher based on a range of sensitivities to address this uncertainty. Also, in a review
of avian studies of dioxin-like toxicity performed by U.S. EPA, chicken was not shown to
be unusually sensitive:

“A conclusion of these analyses is that the domestic chicken is, as is generally
recognized, the most sensitive tested species, but it is not aberrantly sensitive.
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Given the wide range of sensitivities within birds and within mammals to dioxin-
like chemicals, test data for chickens should be used.” (U.S. EPA 2003).

The review also compared TRVs derived through the species sensitivity distribution
(SSD) approach for laboratory versus field studies. The egg TEQ TRVs are lower
(showing greater toxicity) based on field studies compared to TRVs based on laboratory
studies, even when chicken are included in the laboratory SSD (U.S. EPA 2003). This
indicates that the results of chicken studies are not necessarily overprotective for wild
birds, and may even be insufficiently protective in some situations.

As discussed in the ERA, the particular values of the egg TEQ TRVs used in the ERA are
based on enzyme induction, but the TRVs were chosen because they represent a middle
range between the values reported in multiple field studies that resulted in reproductive
impacts as measured in the field, which are ecologically relevant endpoints.

Kingfisher and heron are not closely related, so there is no basis for concluding that “the
TRVs derived for the Great Blue Heron are likely more representative for the
Kingfisher”. CBS recommends that the great blue heron TRVs be used for kingfisher
“rather than those the U.S. EPA has derived based on Gallinaceous birds”, but CBS is
really asking that the range of TRVs based both on chick and dove studies be replaced
with the proposed great blue heron TRVs. The relative sensitivity of kingfisher to PCBs
or dioxin-like effects compared to great blue heron is not known, therefore U.S. EPA
considers the use of the range of TRVs in the ERA appropriate because it reflects
uncertainty over kingfisher sensitivity.

The ERA for great blue heron submitted by CBS shows potential risk to herons feeding
in Conard’s Branch and the upper portion of Richland Creek based on TEQ in heron
eggs. Although the submitted ERA shows very high hazard quotients for dietary TEQ
exposure based on the NOAEL TRV, no assessment was made of potential risk on a
dietary TEQ LOAEL basis. This leaves this aspect of the heron ERA in the same
situation as for kingfisher, risk to dietary TEQ exposure is difficult to assess because
species-specific LOAEL data are lacking for great blue heron. The results of the
submitted great blue heron are contradictory, risk appears to be acceptable on a PCB
basis, but unacceptable on a TEQ basis.

Comment 54: The World Health Organization (WHQO) has recently re-issued its
recommended mammalian TEFs for PCBs (WHO 2005). The new TEFs should be used
for the assessment of risk in the Neal’s Landfill risk assessment.

Response 54: Use of the revised World Health Organization mammalian TEFs has no
effect on the risk characterization for mink because of approximately parallel changes in
both exposure estimates and TRVs. Mean exposure and risk to mink in 2001, 2002, and
2003 were recalculated with the WHO,9s mammalian TEFs presented in van den Berg,
et al. (2006). Mink dietary exposure on a TEQ basis in Conard’s Branch and the upper
reach of Richland Creek decreased by 30 % across the 3 years (range of -24 to -36 % for
the combined Conard’s Branch/Richland Creek exposure scenario). The overall effect on
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risk also depends on recalculation of the TEQ TRVs with the revised TEFs. The mink
TEQ TRVs used in the ERA are based on the geometric mean of the TRVs in two long-
term mink studies (Restum, et al. 1998; Brunstrém, et al 2001). The congener data for
the Restum, et al. (1998) study are reported in Tillitt, et al. (1996). The WHO;09s TEQs
of the three exposure treatments in Restum, et al. (1998) are 24 % lower than the
WHO 998 TEQs, and the WHO,¢9s TEQs of the two exposure treatments in Brunstrom, et
al. (2001) are 53 % lower than the WHO 493 TEQs. The revised mink dietary WHO3¢s
TEQ NOAEC is 2.8 pg/g (compared to 4.6 pg/g WHO 993 TEQ), and the LOAEC is 11
pg/g (compared to 18 pg/g WHO, 993 TEQ), for an overall -39 % decrease in TEQ TRVs.
The net effect is a small increase in several mink NOAEC HQs and few mink LOAEC
HQs, but, because of rounding of the final HQs, the majority of the mink LOAEC HQs
and the rest of the mink NOAEC HQs are unchanged.

CBS has not complied with their own comment. The TEQs in the mink ERA submitted
by CBS are calculated with WHO,99g TEFs.

Comment 55: Conard’s Branch is a very shallow narrow stream. Since kingfishers are
dive feeding birds and the water is so shallow, it is unlikely that kingfishers would use
this stream reach extensively. U.S. EPA has acknowledged verbally that the vast
majority of Conard’s Branch is too shallow during non-storm conditions for the dive
feeding Kingfisher. But U.S. EPA has stated that adequate water depth would be
available during storm periods and that the PAC analysis shows that even short periods of
feeding during storms can result in estimated unacceptable risk for the Kingfisher.
However, U.S. EPA has failed to take into account that Kingfishers need clear water to
locate their prey. During storm periods, the water depth will increase, but the turbidity of
the water also increases dramatically (this is very obvious by reviewing the TSS data
from any of the numerous storm events CBS has monitored in the stream) decreasing the
ability of the kingfisher to see fish in the stream. CBS continues to recommend that a
more appropriate avian receptor for Conard’s Branch is the Great Blue Heron.
Additionally, there is some direct toxicity data for Great Blue Heron and PCBs (see
Viacom 2004). Therefore use of this receptor at this location would reduce the
uncertainty in the avian risk estimate. CBS has shown a representative risk assessment
for great blue herons at the NLF site and thus has developed appropriate factors (feeding
range, ingestion rates, body weight, TRVs etc in Viacom 2004 and in Appendix A).

Response 55: Belted kingfishers depend on shallow water for catching prey. Reportedly,
the majority of prey are caught within 5 to 6 inches below the surface (Prose 1985).
Historically, belted kingfishers have nested along Conard’s Branch. A kingfisher burrow
was observed in 1997 in the bank of Conard’s Branch downstream of the Vernal Pike
overpass and upstream of the confluence with Richland Creek (Dan Sparks, USFWS,
pers. comm.).

Comment 56: U.S. EPA has calculated theoretical hazard quotients greater than 1 for
both mink and kingfisher for the upper reaches of the study area. The hazard quotients
are driven by the amount of time for each receptor that they are assumed to forage from
Conard’s Branch. Conard’s Branch is a small short stream that can only support foraging
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part time for at most 1 mink and/or kingfisher. U.S. EPA is supposed to evaluate
ecological risk at the community or population level (U.S. EPA 1999). While the U.S.
EPA risk assessment does develop scenarios that show theoretical hazard quotients
greater than 1 for these receptors based on very conservative assumptions, U.S. EPA does
not show how such a small area could have any substantive impact on the population of
either receptor in the broader context of the Richland Creek area.

Response 56: The OSWER directive refers to local populations at or near the site, not
regional populations. According to U.S. EPA (1999):

“The goal of the Superfund program is to select a response action that will result
in the recovery and/or maintenance of healthy /ocal populations/communities of
ecological receptors that are or should be present at or near the site. ...
Contaminated media that are expected to constrain the ability of /ocal populations
and/or communities of plants and animals to recover and maintain themselves in a
healthy state at or near the site (e.g., contamination that significantly reduces
diversity, increases mortality, or diminishes reproductive capacity) should be
remediated to acceptable levels.” [emphases added].

One of the reasons for assessing risk to mink and kingfisher is because protection of
piscivorous wildlife from PCB-related risks is expected to be protective of fish and other
aquatic organisms. The same rationale is used in setting the PCB federal ambient water
quality criteria for environmental effects. Therefore, populations of fish may be at risk of
adverse effects in the stream reaches in which mink and kingfisher are potentially at risk.
The potential risk to fish in Conard’s Branch and the upper portion of Richland Creek as
implied in the risk findings for mink and kingfisher are supported by the additional
assessment of direct risk to fish in the ERA and by the adverse effects on creek chub
growth and survival in the field study by Henshel, et al. (2006).

Comment 57: The U.S. EPA has ignored the latest two data sets for PCB in fish
(collected in November 2003 and November 2005) in its estimates of exposure. It should
be noted that the average PCB content in fish at station B in the fall of 2005 was 2.27
ppm and at station D .4 ppm. These 2005 averages are below the stated goals for fish at
these locations in U.S. EPA’s proposed plan.

Response 57: The ERA for the Neal’s Landfill has served its purposes for characterizing
risk and calculating goals for reducing risk to ecological receptors. It will not be
endlessly revised with each additional round of sampling. Data collected subsequent to
completion of the ERA should be used for compliance monitoring and trend analysis.

There are pronounced seasonal fluctuations in PCB concentrations in fish related to large
fluctuations in fish lipid contents. Fish lipid contents are very low in November, and
PCB concentrations are correspondingly at their minima. Since fish lipid contents are
much higher in the spring and summer, PCB concentrations are also greater during spring
and summer. For this reason, the November fish PCB data sets under-represent
exposures of fish, mink, or kingfisher to PCBs, and compliance of November whole-body
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fish PCB averages with stated goals is an incomplete evaluation of whether risk
objectives have been attained.

See Attachment 4 for the November 2005 fish sample data. The November 2005 average
PCB content in creek chub at Conard’s Branch (station B) is approximately one-half of
the concentration at this station in November 2002 (4.05 to 4.89 ppm depending on two
approaches for Aroclor analysis). However, the mean TEQ in Conard’s Branch creek
chub in November 2005 (53 pg/g) is only 25 % less than the November 2002 value (71
pg/g). The inconsistency between PCB and TEQ trends may be related to the change in
PCB analytical methods between the sampling periods — Aroclor analysis in 2002 versus
the sum of congeners method in 2005.

Evaluation of the average PCB concentration in station D (Richland Creek at Vernal
Pike) fish in November 2005 is complicated by the absence of white sucker. In contrast,
the average PCB concentration in fish at this station in November 2002 included data for
white sucker. Trends should therefore be assessed for the two species collected in both
sample events. This shows essentially no trend for PCBs, but a small increase in TEQ in
2005 compared to 2002. The mean PCB content in creek chub in 2005 (0.25 ppm) is
barely below the 2002 range (0.27 to 0.33 ppm), but the mean TEQ content in 2005 (8
pg/g) is slightly higher than in 2002 (7 pg/g). The mean PCB content in longear sunfish
in 2005 (0.55 ppm) is within the 2002 range (0.48 to 0.59 ppm), but the mean TEQ
content in 2005 (16 pg/g) is higher than in 2002 (14 pg/g).

Risk estimates for the November 2005 data at the Richland Creek at Vernal Pike location
is misleading without white sucker data. Risk may be approximated by assuming the
same empirical relationship between mean concentrations in longear sunfish and white
sucker as observed in November 2002. This is the same approach used to estimate
missing crayfish data. In November 2002, mean PCB concentration in white sucker was
2.5 times that in longear sunfish, and mean TEQ was 1.8 times. With this approach,
November 2005 mink risk estimates for PCBs are in the same range as November 2002:
no effect to low effect HQs of 1 to 0.8, and NOAEL to LOAEL HQs for TEQ are slightly
higher: 3 to 0.8. The risk estimates for Conard’s Branch are lower than in November
2002, but still indicate risk: PCB HQ of 3 (no effect and low effect are the same because
of rounding), and NOAEL to LOAEL HQs for TEQ of 8 to 2. The combined foraging
scenarto over Conard’s Branch and Richland Creek for November 2005 shows somewhat
smaller risk than in November 2002 for PCBs: no effect to low effect HQs of 2 to 1, but
similar risk for TEQ: no effect to low effect HQs of 4 to 1. These are risk estimates for
mean exposures, risk estimates for UCL exposures have not been recalculated.

Comment 58: U.S. EPA states in section 6.1 that there is no obvious trend to the fish
data. CBS disagrees. U.S. EPA should reconsider this statement in light of the complete
fish data set (through fall 2005). As U.S. EPA notes, evaluations of trends in fish data
can be confounded by a number of factors. CBS has evaluated trends in both the spring
water PCB levels (which ultimately drive PCB trends in fish), and in the PCB data in
fish. These analyses were sent to U.S. EPA in CBS 2006a and CBS 2007. These
analyses show that indeed there is a downward trend to both the concentration of PCBs in
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the spring water and the fish. These analyses have been reviewed by U.S. EPA
consultants and to the best of our knowledge U.S. EPA has concurred with CBS’s
conclusions on trend.

Response 58: U.S. EPA concurs with the trend analysis for spring water PCB levels, but
considers the trend for fish to be more uncertain. The greater uncertainty in fish PCB
trends arises partly because of the much smaller data base for fish samples compared to
water samples, and partly because of the greater complexity of the biological and
ecological processes affecting bioaccumulation of PCBs in fish compared to the physical
processes affecting PCB levels in water. The statement that there is no obvious trend in
the fish data included in the ERA is a valid observation, which is reinforced by the
contradictory results of comparing mean TEQ in November fish samples between 2002
and 2005 — Conard’s Branch data indicate a declining trend, but Richland Creek data
indicate no or even increasing trends.

Comment 59: The U.S. EPA has added an assessment of risk to fish. The measure of
effects is taken from a Giesy study on dioxin (TCDD) effects on rainbow trout. CBS has
several comments on this approach:

Comment 59a: First, U.S. EPA has used a study on rainbow trout. There are no rainbow
trout in the NLF drainage and the characteristics of the stream are such that trout will not
inhabit this stream (it is a warm water fishery). Rainbow trout have shown to be very
sensitive to the effects of dioxin and dioxin like chemicals.

Response 59a: See Response 52.

Comment 59b: Second, U.S. EPA is using a TRV that is based on exposure to dioxin.
This ignores the large body of literature available on PCBs. This increases the

uncertainty in the analysis and is unnecessary since studies directly assessing the effect of
PCBs on fish are available.

Response 59b: U.S. EPA is not aware of controlled long-term PCB exposure studies to
adult fish.

Comment 59¢: The U.S. EPA conclusion that fish may be at risk in the NLF drainage
appears to be at odds with the available fish population data that shows a diverse and
plentiful population of fish both in the NLF drainage and at other Bloomington area sites
with comparable or higher levels of PCBs (such as Stout’s Creek).

Response 59¢: As discussed in Response 52, the field study by Henshel, et al. (20006)
shows adverse effects on creek chub survival and growth in Conard’s Branch and the
upper portion of Richland Creek, and in Clear Creek.

Comment 60: The U.S. EPA has added an assessment of a road killed mink reportedly

found near the NLF site to the risk assessment. CBS has several comments on this
approach:
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Comment 60a: First, there is no way to verify where and when the mink was actually
found. The mink was reportedly found by a local resident who was also a local
environmental activist. This resident reportedly found the mink and then kept it in their
freezer for some length of time before handing it over to USFWS for analysis.

Response 60a: The uncertain origin of the road-killed mink is addressed in the ERA.
The agreement between modeled and measured accumulation of PCBs or TEQ in mink
liver for that location is supporting evidence that the mink foraged in that location. The
implication that the mink may have been planted would also require a sophisticated
ability to either collect a mink from some other exposure area with PCB levels equivalent
to, but not notably higher or lower than the PCB levels along that portion of Richland
Creek, or an even more highly sophisticated ability to spike the mink carcass with a quite
precise amount of PCBs to give the appearance of local accumulation. While neither
scenario can be absolutely ruled out, they are also highly improbable.

Comment 60b: Second, the U.S. EPA analysis of the mink data assumes lipid values for
certain key literature to evaluate effects. The use of assumed lipid values is key to their
analysis and the validity of these assumed values cannot be verified and is inappropriate.

Response 60b: The use of assumed lipid values in the ERA to allow comparisons of the
road-killed mink liver data with published effect levels on both a wet-weight and lipid-
normalized basis is fully transparent — assumed values are marked in parentheses, and
calculated vales not directly given in the original publications are marked with an
asterisk. Comparisons can therefore be easily made with or without derived data.

Comment 60c: Many of the studies evaluated by U.S. EPA have issues which should
disqualify them for consideration. For example, many of the studies U.S. EPA cites have
endpoints of questionable population level relevance such as enzyme induction, hepatic
vitamin A, or mandibular and squamas cell proliferation. The Saginaw Bay studies have
been shown to be influenced by other contaminants. The study by Leonard et al (1995) is
not a primary source of data and should not be used.

Response 60c: The purpose of the table was to show where the road-killed mink sample
falls within a continuum of toxic responses, including no effect concentrations at which
no adverse effects are expected. Comparisons were made on the basis of both PCBs and
TEQs. TEQs incorporate the dioxin-like effects of co-contaminants into a single value.
Leonards, et al. (1995) is included because they derived thresholds for severe adverse
impacts on litter size and kit survival based on meta-analysis of multiple toxicological
studies of mink, which provides an additional line of evidence for evaluating whether the
accumulations of PCBs and TEQ by the road-killed mink were well above LOAECs (the
evaluation shows they were not).

Comment 60d. CBS feels the quality assurance issues associated with using a road killed

mink supplied by a local activist overwhelm the utility of the data. However, if the data
were to be used, the Bursian 2003 study presents data on PCB levels in mink liver that
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could be used for comparison. The levels of PCB found in the road killed mink liver (77
pg/g) are below levels found in Bursian 2003 livers that may cause population level
effects such as kit survival beyond 6 weeks (the threshold from Bursian 2003 for kit
survival is given as the geomean of the NOAEL and LOAEL and amounts to 111 pg/g
TEQ in the liver of the adult females).

Response 60d: Bursian, et al. (2003) is included in the comparison in the ERA.

Comment 61: CBS has re-calculated the risk for a theoretical heron receptor (Appendix
A) and calculated risks for a mink receptor (Appendix B) based on revised TRVs,
exposure scenarios and site-use factors that are more reasonable. These calculations
indicate that the risk to these two receptors based on average PCB levels in 2003 are
minimal, with HQ values only exceeding 1.0 based on the NOAEL, but not for the
LOAEL. The greatest HQ based on the NOAEL for mink (based on the 95% UCL
concentration in diet) was 1.7 (for PCBs) and 2.7 (for TEQs), which indicates that there is
little if any risk to mink. The greatest HQ based on the NOAEL for great blue herons
(based on the 95% UCL concentration in diet or modeled concentration in eggs) was 1.0
(for PCBs), which indicates that there is little if any risk to great blue herons. When risks
to great blue heron from exposure to TEQ are assessed, there is limited data for
piscivores for ecologically relevant endpoints (something more relevant than enzyme
induction). From the limited field data, Entrix derived a TRV and calculated a maximum
NOAEC-based HQ of 40. This HQ has an uncertain amount of conservatism in it and as
a single line of evidence would not support additional remedial actions. As noted above,
since PCB levels in fish appear to be declining, it is anticipated that the current risk to
receptors is less than even these calculated levels.

Response 61: The ERA for great blue heron submitted by CBS shows potential risk to
herons feeding in Conard’s Branch and the upper portion of Richland Creek based on
TEQ in heron eggs. Although the submitted ERA shows very high hazard quotients for
dietary TEQ exposure based on the NOAEL TRV, no assessment was made of potential
risk on a dietary TEQ LOAEL basis. This leaves this aspect of the heron ERA in the
same situation as for kingfisher, risk to dietary TEQ exposure is difficult to assess
because species-specific LOAEL data are lacking for great blue heron. The results of the
submitted great blue heron are contradictory, risk appears to be acceptable on a PCB
basis, but unacceptable on a TEQ basis.

The mink ERA submitted by CBS demonstrates that risk to mink may be avoided by use
of TRVs based on the single-breeding season exposure study performed by Bursian, et al.
(2006). As discussed above, the assertion that the relative potency of the feed used in the
Bursian, et al. (2006) mink study is equivalent to that in fish near Neal’s Landfill is based
on incomplete and selective use of the Bursian, et al. (2006) data (only the relative
potency of the one treatment with anomalously high potency is reported by CBS). Use of
the mean relative potency of all of the Bursian, et al. (2006) treatments shows much
lower relative potency compared to fish near Neal’s Landfill, with as much as a 2- to 3-
fold difference. Bursian, et al. (2006) also reported LC;o and LCyy TRVSs, which bracket
the probable onset of adverse effects. Use of these TRVs in the CBS ERA result in LC)g
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HQs of 8-9 for mean exposure, and 10-12 for UCL exposure; and LC;9 HQs of 2 for
mean exposure, and 3 for UCL exposure.

Comment 62: In summary, the U.S. EPA risk assessment is overly conservative for the
following reasons:

a. The U.S. EPA has only calculated theoretical risk based on modeled
conservative receptors. This approach is only appropriate to rebut the
presumption of risk.

b. U.S. EPA has not performed any field studies to determine if their
conservative risk estimates are realistic or to determine if there are any
real effects to any populations of receptors.

c. U.S. EPA has not shown how their theoretical risk estimates over the
small areas with hazard quotients greater than 1 could manifest into
population level effects for any receptors.

U.S. EPA has failed to properly consider the latest studies with mink and piscivorous
birds that show less sensitivity with PCBs.

Response 62: All of these comments have been addressed in previous responses.
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Technical Memorandum — Model Simulation of Volatilization



QERA...

Quantitative Enwronmental Analysis, LLc

TECHNICAL MEMORANDUM
TO: Russ Cepko - CBS DATE: April 2, 2007
FROM: Kevin Russell RE: Model Simulation of
Volatilization
CcC: Dottie Alke — CBS JOB#: VIAnea:130

Jim Rhea — QEA
David Glaser - QEA

A mathematical model of PCB fate and transport was developed and calibrated for two streams
(Conard’s Branch and Richland Creek) that are impacted by PCBs from the Neal’s Landfill Site
in Bloomington, IN (QEA 2007). QEA has developed this memorandum to provide additional
detail on the simulation of PCB volatilization within the model. This memo describes the
mathematical formulation for volatilization in the model and the parameter values that were used
to represent this site, and summarizes the results for model-predicted volatilization flux.

Theory and Mathematical Formulation

Volatilization is the process by which PCBs are transported across the air-water interface.
Transfer of PCBs at the air-water interface is calculated by the PCB fate sub-model as a function
of two parameters: 1) the chemical’s Henry’s Law Constant; and 2) a mass transfer coefficient
that describes the rate by which PCBs are transported across the air-water interface. In the PCB
fate sub-model, PCB flux from the water column due to volatilization is expressed based on
these parameters as follows:

cair
J\' = L(cd_H*) (1)
where: Jy = volatilization flux (M L2Th:
193 = volatilization mass transfer coefficient (L T™');
C4 = freely dissolved PCB concentration in water (M L), which is
calculated internally in the model based on the PCB partitioning
coefficient — see Section 3.2.1.3.6 in QEA 2007;
www.qeallc.com
305 West Grand Avenue 290 Elwood Davis Road 80 Glen Street 800 Brazos Street
Suite 300 Suite 230 Suite 2 Suite 308
Montvale, NJ 07645 Liverpool, NY 13088 Glens Falls, NY 12801 Austin, TX 78701
(201) 930-9890 (315) 453-9009 (518) 792-3709 (512) 707-0090
(201) 930-9805 fax (315) 453-9010 fax (518) 792-3719 fax (512) 275-0915
Sfax

Page | of 5



QEA

An

Cair vapor phase PCB concentration in air (M L‘3); and
H* = dimensionless Henry’s Law Constant (--).

The Henry’s Law Constant (HLC) equals a chemical’s vapor pressure divided by its solubility in
water and is calculated from the equilibrium ratio of gas phase and water phase concentrations
measured in laboratory experiments. This ratio is a fundamental property of a chemical. A high
HLC is indicative of a volatile chemical that preferentially accumulates in the air phase, while a
low HLC is indicative of a non-volatile chemical that preferentially accumulates in the water
phase. HLC values for PCBs are relatively low compared to other classes of organic chemicals
(MacKay et al. 1992). Values of HLC are typically presented in units of partial pressure per unit
aqueous concentration (e.g., Pa-m*/mol), while the model uses a dimensionless ratio that is
derived from HLC by dividing by the product of the universal gas constant and absolute
temperature (thus converting pressure into concentration using the ideal gas law):

HLC

H¥=—— 2)
R(T +273)
where: R = Universal Gas Constant (= 8.314 J/K mol); and
T = water temperature, which is specified in the model inputs (°C).

The volatilization mass transfer coefficient (k; in Equation 1) in the model is calculated based on
the classic “two-film theory” of gas transfer (Whitman 1923; Lewis and Whitman 1924). In this
model, &, is dependent on the rates of mass transfer through relatively thin layers of water and air
at the interface, which are in turn dependent on the concentration gradients in the layers, and the
diffusivity of PCBs in the layers (O’Connor 1983, 1984):

k K,
ky=——— 3)
k, +—
H*

where: ke = vapor phase mass transfer coefficient (L T'); and
k = water phase mass transfer coefficient (L T'l).

The liquid phase mass transfer coefficient (k; in Equation 3) is calculated internally by the model
as a function of the PCB diffusivity in water and the water depth and current velocity (which are
calculated by the hydrodynamic sub-model) using the O’Connor and Dobbins (1958)
formulation:

k= . 4)

www.geallc.com
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where: D, = molecular diffusivity of PCBs in water LT
h = mean water depth from hydrodynamic sub-model (L); and
U = average current velocity from hydrodynamic sub-model (L .

Molecular diffusivity for this expression is calculated internally by the model using the equation
presented by Hayduk and Laudie (1974):

13.26x107
w T 14 vy 0589 )
u vy
where: M = water viscosity (centipoise), which is calculated internally by the
model as a function of water temperature; and
vV = PCB molar volume (cm3/mol).

Finally, the overall volatilization mass transfer coefficient calculated using Equations 3
through 5 is corrected for temperature effects using the standard Arrhenius Equation (e.g.,
Chapra 1997):

k, (T)=k, (20°C)g" ™ (6)

where: 6. = volatilization temperature correction factor (--).

Equation 4 predicts that mass transfer is positively related to current velocity, which reflects the
fact that increased turbulence tends to increase the effective surface area of the air-water
interface, and thereby the efficiency of gas-liquid exchange. Likewise, Equation 4 predicts that
volatilization is inversely related to water depth (i.e., shallower areas will produce more
volatilization than deeper areas). Finally, the dependence of k; on temperature in Equation 6
results in the mass transfer coefficient being positively related to temperature (i.e., volatilization
increases at higher temperature).

Application to the Neal’s Landfill Site

Based on the equations presented above, the model computes volatilization flux for each
computational grid element, dynamically over the course of a simulation. The following site-
specific parameters are provided as input to the model: HLC, cgir, kg, V , and 6,. Values used
for these parameters in the Neal’s Landfill model were as follows:

e The HLC of PCBs varies with chlorination level; a site-specific value was estimated
based on published HLC values for PCB congeners (Brunner et al. 1990) and was
adjusted within the range of values corresponding to Aroclors 1242 and 1248 during
model calibration. A value for HLC of 5 Pa-m’/mol, which corresponds to a
dimensionless value (H* in Equation 2) of 0.0021 at 20°C, was used in the model.

www.qgeallc.com
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e The air phase PCB concentration (¢, in Equation 1) was set equal to zero because
atmospheric PCB concentrations are typically several orders of magnitude lower than
those in water, and thus this value has very little impact on the calculated volatilization
flux (e.g., QEA 1999).

e The vapor phase mass transfer coefficient (k, in Equation 3) was assigned a constant
value of 100 m/d, which is a reasonable approximation for streams and rivers because of
the limited impact of air motion (winds) on transfer in these systems (O’Connor 1983).

e The molar volume (V in Equation 5) was assigned a mean value of 260 cm’/mol, which
is consistent with published molar volumes for the major PCB homologs that compose
Aroclors 1242 and 1248 (Mackay et al. 1992).

e The volatilization temperature correction factor (8, in Equation 6) was set to a typical
value of 1.025 (e.g., Chapra 1997).

The remaining parameters used in the volatilization equations are computed internally by the
model as described above (H*, k;, D,,, U, h, and y), or are provided as model inputs (7).

Model Results

The model predictions suggest that volatilization is a relatively minor PCB mass transport
process in Conard’s Branch and Richland Creek. For example, the model mass balance over the
2001-2005 calibration period indicates that the total volatilization from Conard’s Branch was
calculated to be 0.09 kg, which represents 3% of the total PCB mass entering from the springs
and Spring Treatment Facility effluent (see Figure 3-36 in QEA 2007).

A temporal plot of the model-predicted PCB volatilization rate (i.e., grams per day) is shown
with the system flow rate in Figure 1, for years 2001 through 2005. The temporal plots
demonstrate the model’s calculation of increases in volatilization due to higher current velocities
during high flow periods, as well as the generally higher volatilization rates during non-storm
conditions in the summertime, due to lower water depths and higher temperatures.
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ATTACHMENT 2

Table 1 — Revised Risk Summary
Table 2 — Revised Risk Summary
EPA’s Revised Exposures, Risks, and Hazards
Human Health Risk Assessment
Tables A-1 through Table A-5
Neal’s Landfill
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TABLE A-1

REVISED GENERAL AND CHEMICAL-SPECIFIC EXPOSURE PARAMETER VALUES
HUMAN HEALTH RISK ASSESSMENT
NEAL'S LANDFILL
BLOOMINGTON, MONROE COUNTY, INDIANA

General Exposure Parameters

Values
ﬂExposure Parameter Acronym Units Adult (18+) | Youth (7 to 18)] Child (1 to 6)
Exposure Point Concentrations EPC varies Location Specific
Exposure Frequency (sw, sed, bks, fs) |EF,,. and
(NS, SS, Pre-A, A) EF, daysfyear 20 20 20
EF,,, 68 68 68
Exposure Frequency (sw, sed, bks, fs) EF o0 68 68 68
H(Sections B, C,and D) EF s 76 76 76
EF days/year 76 76 76
EFg.. EFsea.
Expo_sure Frequency (sw, sed, bks, fs) EF,,.. and
(Sections E, F, and G) EF, dayslyear 30 30 30
Exposure Frequency (aquatic life) EF, days/year 365 365 365
Exposure Duration ED years 30 12 6
Body Weight BW kg 70 47 15
Ingestion Rate (aquatic life) IR, kg/day see below NA NA
Ingestion Rate (sediment and soil)
IR and IR, {mg/day 100 100 200
Ingestion Rate (surface water) IR, L/day 7.50E-03 1.50E-02 1.50E-02
Cooking Reaction Factor CRF unitless 05 0.5 0.5
Skin Surface Area (sediment) SA o4 cm? 2129 1640 809
Skin Surface Area (soil) SA, cm’ 5700 4373 2378
Skin Surface Area (surface water) SA,, cm? Location Specific
Adherence Factor (sediment) AF g mglcm2 0.3 0.3 0.3
Adherence Factor (soil) AF o mglcm* 0.07 0.2 0.2
Dermal Absorption ABS unitless Chemical Specific
Absorbed Dose per Event DA.vem mg/cm*-event Chemical Specific
Exposure Time ET hr/day 1 1 1
Event Frequency EV event/day 1 1 1
Fraction Contaminated - Soil FC unitless 05 05 0.5
Conversion Factor 1 CF1 mg/ng 1.00E-06 1.00E-06 1.00E-06
Conversion Factor 2 CF2 mg/ug 1.00E-03 1.00E-03 1.00E-03
Conversion Factor 3 CF3 kg/mg 1.00E-06 1.00E-06 1.00E-06
Averaging Time (carcinogens) AT, days 25550 25550 25550
Averaging Time (noncarcinogens) AT days 10950 4380 2190
Gastrointestinal Absorption ¢]] unitiess Chemical Specific
Chronic Oral Exposure Reference Dose . .
RD mg/kg-day Chemical Specific
Oral Slope Factor SF (mg/kg-day) ' Chemical Specific




TABLE A-1

REVISED GENERAL AND CHEMICAL-SPECIFIC EXPOSURE PARAMETER VALUES

HUMAN HEALTH RISK ASSESSMENT

NEAL'S LANDFILL
BLOOMINGTON, MONROE COUNTY, INDIANA

Chemical Specific Values"

Values
Chemical ABS FA K, C. Tevent tovant Gl RfD” SF°
RN YT s
|PCB 0.14 0.5 4.30E-01 see note 11.29 2 0.8 to .96 | 2.00E-05 2
TEQ - -- -- -- -- -- 0.5t00.83] 1.00E-09 | 1.50E+05
[TEQepa anemate - - - - - - - - 1.00E+06
Cw = This concentration is the EPC,, in units of mg/cm’.
2 PCB-specific exposure factors were obtained from EPA's RAGS Part E (EPA 2004a).
PCB-specific toxicity factors were identified as discussed in Sections 4.2.2 and 4.3.2 of the draft HHRA (Tetra
b Tech 20086).
Ingestion Rate of Aquatic Life
Values
Adult Child (1to
Rate Fish Type |units (18+) Youth (7 to 18) 6)
1- Mile Pelagic kg/day 0.0060 - --
Benthic kg/day 0.0015 - -
3 - Mile Pelagic kg/day 0.0073 - --
Benthic kg/day 0.0018 - -
5.5 - Mile Pelaglhc kg/day 0.0092 - -
Benthic kg/day 0.0023 - -
12.7 - Mile Pelagl.c kg/day 0.0183 - -
Benthic kg/day 0.0046 - -
Skin Surface Area (surface water)
Location Specific Values
Values
Adult [Youth (7
Location units (18+4) to18) |Child (1 to6)
South Spring {cm? 1225 949 451
North Spring  [cm* 1225 949 451
Pre-A cm’ 1521 1352 776
A cm? 1818 1754 939
B cm? 2410 2157 1101
lic cm? 3595 2559 1101
o cm® 3595 | 2559 1101
e cm? 3595 | 2559 1101
F cm? 3595 2559 2284
G cm?® - - —
1 - Mile cm? 3002.5 2358 1101
3 - Mile cm 3595 2559 1101




Notes:
ABS
Cw

FA
Gl

PCB
RID

SF

TBVBﬂl

tGVB nt

TEQ

TABLE A-1

REVISED GENERAL AND CHEMICAL-SPECIFIC EXPOSURE PARAMETER VALUEg
HUMAN HEALTH RISK ASSESSMENT
NEAL'S LANDFILL
BLOOMINGTON, MONROE COUNTY, INDIANA

Dermal absorption factor (unitless)
Chemical concentration in water - this concentration is equivalent to the location-specific surface water

exposure point concentration (EPA) (see Table A-2) in units of milligrams per cubic meter (mg/cm’).
Fraction absorbed water (unitless)

Gastrointestinal absorption (unitless)

Dermal permeability coefficient in water (centimeter per hour [cm/hr])
= Polychlorinated biphenyl
= Oral reference dose (miltigram per kilogram - day {mg/kg-day})

= Oral slope factor (mg/kg-day)’

= Lag time per event (hour per event [hr/event])
= Event duration (hour per event [hr/event])
= Toxicity equivalent



TABLE A-2

MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATIONS
HUMAN HEALTH RISK ASSESSMENT
NEAL'S LANDFILL
BLOOMINGTON, MONROE COUNTY, INDIANA

Exposure Point Concentrations”

VYalues
Locationb Chemical EPCal(pelngic)l EPCaI(benlhic) EPCS\V DAeven( EPCud EPCbs EPCI’;
(ug/kg-PCB/ng/kg-TEQ) (mg/L) (mg/cm’-event) (mg/kg) (mg/kg) (mg/kg)
South Spring PCB -- - 1.25E-03 3.53E-06 - -- -
North Spring PCB - - 6.76E-04 1.91E-06 -- - -
Pre-A PCB -- - 9.28E-04 2.62E-06 -- 12.5 4.5
A PCB - - 1.91E-04 5.39E-07 1 1.8 2.7
B PCB -- -- - - 3.20E-02 - 2.20E-01
C PCB -- - - - -- 1.40E-02 --
D PCB -- - - - 1.90E-02 - -
E PCB -- - - - 2.70E-02 | 2.40E-01 -
F PCB - -- -- -- 3.60E-01 - --
G PCB - - - - 2.10E-01 - -
. PCB 182 808 1.04E-04 2.94E-07 -- - --
1 - Mile —
T'EQ 30 10.2 -- -- - - -
3 - Mile PCB 114.8 182.8 1.50E-04 4 24E-07 -- -- --
TEQ 1.0 1.4 -- -- - - -
. PCB -- 192 -- - - - -
5-Mil
>3- Mile TEQ ~ 23 = ” - - -
. PCB 92 165 - - - - —
12.7 - Mile TEQ — — — — — — —
Notes:

Not applicable

ug/kg = Microgram per kilogram
mg/kg = Milligram per kilogram
mg/L = Milligram per liter

ng/kg = Nanogram per kilogram
PCB = Polychtorinated biphenyl
TEQ = Toxicity equivalent

the draft HHRA (Tetra Tech 2006).

See Figures 1, 2, and 3 in the draft HHRA (Tetra Tech 2006).

Medium-specific EPC calculations are discussed in Section 3.3.1 and presented in Appendix A of



TABLE -3

REVISED FISH INGESTION I'ISKS AND HAZARDS
HUMAN HEALTH RISK ASSESSMENT
NEAL'S LAND “ILL
BLOOMINGTON, MONROE C)OUNTY, INDIANA

PCB TCDD TEQ

Location Fish ADD Hazard LADD Risk ADD Hazard LADD Risk Riskgpa an

1 - Mile Pelagic | 7.8E-06 3.9E-01 3.3E-06 | 6.7E-06 1.3E-10 1.3E-01 5.5E-11 8.3E-06 5.5E-05

Benthic | 8.7E-06 4.3E-01 3.7E-06 | 7.4E-06 1.1E-10 1.1E-01 4.7E-11 7.0E-06 4.7E-05

3 - Mile Pelagic | 6.0E-06 3.0E-01 2.6E-06 | 5.1E-06 | 5.2E-11 5.2E-02 2.2E-11 3.4E-06 2.2E-05

Benthic [ 2.4E-06 1.2E-0) 1.0E-06 | 2.0E-06 1.8E-11 1.8E-02 7.7E-12 1.2E-06 7.7E-06

5.5 Mile |Lelagic -

Benthic | 3.2E-06 1.6E-01 1.4E-06 | 2.7E-06 [ 3.8E-11 3.8E-02 1.6E-11 2.4E-06 1.6E-05

12.7 - Mile Pelagic | 1.2E-05 6.0E-01 5.2E-00 1.0E-05 - - -- -- -

Benthic | 5.4E-06 2.7E-01 2.3E-06 | 4.6E-06 - -- -- -- --

Notes:

-- = Not calculated

ADD = Average daily dose (mg/kg-day)

LADD = Lifetime average daily dose (mg/kg-day)
mg/kg-day = Milligram per kilogram per day

PCB = Polychlorinated biphenyl

TCDD = Tetrachloro-p-dioxin

TEQ = Toxicity equivalent

Riskgpa ax = U.S. Environmental Protection Agency's alternative TCDD slope factor (see Section 4.2.2).



TABLE A-4

REVISED SURFACE WATER RISKS AND HAZARDS
HUMAN HEALTH RISK ASSESSMENT
NEAL'S LANDFILL
BLOOMINGTON, MONROE COUNTY, INDIANA

Ingestion Dermal Contact
Location | Chemical ADD Hazard LADD Risk ADD Hazard LADD Risk
South Spring]i PCB 7.3E-09 | 3.7E-04 | 3.1E-09 | 6.3E-09 | 3.4E-06 | 1.7E-01 | 1.5E-06 | 2.9E-06
North Spring| PCB 4.0E-09 | 2.0E-04 1.7E-09 | 3.4E-09 1.8E-06 | 9.2E-02 | 7.8E-07 1.6E-06
Pre-A PCB 5.4E-09 | 2.7E-04 | 2.3E-09 | 4.7E-09 | 3.1E-06 | 1.6E-01 | 1.3E-06 | 2.7E-06
A PCB 1.IE-09 | 5.6E-05 | 4.8E-10 | 9.6E-10 | 7.7E-07 | 3.8E-02 { 3.3E-07 | 6.6E-07
B PCB -- -- -- -- -- .- -- --
C PCB - -- -- - - -- -- --
D PCB -- -- - -- -- -- -- -
E PCB -- -- -- -- - -- - --
F PCB -- -- - - - -- -- --
G PCB - - - - -- -- -- -
1 - Mile PCB 2.1E-09 1.0E-04 | 8.9E-10 1.8E-09 | 2.3E-06 | 1.2E-01 | 1.0E-06 | 2.0E-06
3 - Mile PCB 1.3E-09 | 6.6E-05 | 5.7E-10 1.1E-09 1.8E-06 | 8.9E-02 { 7.7E-07 1.5E-06
South Spring| PCB 2.2E-08 1.1E-03 | 3.7E-09 | 7.5E-09 | 3.9E-06 | 2.0E-01 | 6.7E-07 1.3E-06
North Spring PCB 1.2E-08 | 5.9E-04 | 2.0E-09 | 4.1E-09 | 2.1E-06 | 1.1E-01 | 3.6E-07 | 7.2E-07
Pre-A PCB 1.6E-08 | 8.1E-04 | 28E-09 | S5.6E-09 | 4.1E-06 | 2.1E-01 | 7.1E-07 1.4E-06
A PCB 3.3E-09 1.7E-04 | 5.7E-10 1.1E-09 1.1E-06 | 5.5E-02 | 1.9E-07 | 3.8E-07
B PCB -- -- - -- - -- -- --
C PCB -- .- -- -- -- - -- --
D PCB -- -- -- -- - - - --
E PCB -- -- - -- -- -- -- -
F PCB -- - - - - -- - --
G PCB - -- - - - -- -- --
1 - Mile PCB 2.7E-09 1.4E-04 | 4.7E-10 | 9.4E-10 1.2E-06 | 6.1E-02 | 2.1E-07 | 4.2E-07
3 - Mile PCB 3.9E-09 | 2.0E-04 | 6.7E-10 1.3E-09 1.9E-06 | 9.5E-02 | 3.2E-07 | 6.5E-07
South Spring} PCB 6.8E-08 | 34E-03 | 5.9E-09 1.2E-08 | 5.8E-06 | 2.9E-01 | S.0E-07 1.0E-06
North Spring] PCB 3.7E-08 1.9E-03 | 3.2E-09 | 6.3E-09 | 3.1E-06 | 1.6E-01 | 2.7E-07 | 5.4E-07
Pre-A PCB 5.1E-08 | 2.5E-03 | 4.4E-09 | 8.7E-09 | 7.4E-06 | 3.7E-01 | 6.4E-07 {.3E-06
A PCB 1.0E-08 | 5.2E-04 | 9.0E-10 1.8E-09 1.9E-06 | 9.3E-02 | 1.GE-07 | 3.2E-07
B PCB -- - - -- - -- -- -
C PCB - -- - - - - - --
D PCB - -- - - -- -- - -
E PCB -- -- - - - -- -~ --
F PCB - - - - - - -- --
G PCB -- - - - - -- - --
1 - Mile PCB 8.5E-09 | 4.3E-04 | 7.3E-10 1.5E-09 1.8E-06 | 8.9E-02 | 1.5E-07 | 3.0E-07
3 - Mile PCB 1.2E-08 | 6.2E-04 1.1E-09 | 2.1E-09 | 2.6E-06 | 1.3E-01 | 2.2E-07 | 4.4E-07
Notes:

- = Not calculated

ADD = Average daily dose (mg/kg-day)

LADD = Lifetime average daily dose (mg/kg-day)
mg/kg-day = Milligram per kilogram per day

PCB =

Polychlorinated biphenyl



TABLE A-5

REVISED SEDIMENT AND SOIL EXPOSURES, RISKS, AND HAZARDS
HUMAN HEALTH RISK ASSESSMENT
NEAL'S LANDFILL
BLOOMINGTON, MONROE COUNTY, INDIANA

Ingestion Dermal Contact
Location Type Chemical| ADD Hazard LADD Risk ADD Hazard LADD Risk
Pre-A Bank Soil PCB 9.8E-07 49E-02 | 4.2E-07 8.4E-07 5.5E-07 2.7E-02 2.3E-07 | 4.7E-07
Floodplain Soil PCB 3.5E-07 1.8E-02 1.5E-07 3.0E-07 2.0E-07 9.8E-03 8.4E-08 1.7E-07
Sediment PCB 7.8E-08 3.9E-03 3.4E-08 6.7E-08 7.0E-08 3.5E-03 3.0E-08 6.0E-08
A Bank Soil PCB 1.4E-07 7.0E-03 6.0E-08 1.2E-07 7.9E-08 3.9E-03 3.4E-08 6.7E-08
Floodplain Soil PCB 2.1E-07 1.1E-02 9.1E-08 1.8E-07 1.2E-07 5.9E-03 5.1E-08 1.0E-07
B Sediment PCB 8.5E-09 | 4.3E-04 3.6E-09 7.3E-09 7.6E-09 3.8E-04 3.3E-09 6.5E-09
Floodplain Soil PCB 6.5E-08 3.3E-03 2.8E-08 5.6E-08 3.7E-08 1.8E-03 1.6E-08 3.1E-08
c Sediment PCB -- -- -- -- - - - -
Bank Soil PCB 4.2E-09 2.1E-04 1.8E-09 3.6E-09 2.3E-09 1.2E-04 1.0E-09 2.0E-09
D Sediment PCB 5.1E-09 2.5E-04 2.2E-09 4.3E-09 4.5E-09 2.3E-04 1.9E-09 3.9E-09
Bank Soil PCB - -- - -- -- -- -- -
E Sediment PCB 3.2E-09 1.6E-04 1.4E-09 2.7E-09 2.8E-09 1.4E-04 1.2E-09 2.4E-09
Bank Soil PCB 2.8E-08 1.4E-03 1.2E-08 2.4E-08 1.6E-08 7.9E-04 6.7E-09 1.3E-08
F Sediment PCB 4.2E-08 2.1E-03 1.8E-08 3.6E-08 3.8E-08 1.9E-03 1.6E-08 3.2E-08
Bank Soil PCB -- -- -- - - - - -
G Sediment PCB 2.5E-08 1.2E-03 1.1E-08 2.1E-08 2.2E-08 1.1E-03 9.4E-09 1.9E-08
Bank Soil PCB -- - - - - - - -
Pre-A Bank Soil PCB 1.5E-06 7.3E-02 2.5E-07 5.0E-07 1.8E-06 8.9E-02 3.1E-07 6.1E-07
Floodplain Soil PCB 5.2E-07 2.6E-02 9.0E-08 1.8E-07 6.4E-07 3.2E-02 1.1E-07 2.2E-07
Scdiment PCB 1.2E-07 5.8E-03 2.0E-08 4.0E-08 8.0E-08 4.0E-03 1.4E-08 2.8E-08
A Bank Soil PCB 2.1E-07 1.0E-02 3.6E-08 7.2E-08 2.6E-07 1.3E-02 4.4E-08 8.8E-08
Floodplain Soil PCB 3 AE-07 1.6E-02 5.4E-08 1.1E-07 3.9E-07 1.9E-02 6.06E-08 1.3E-07
B Sediment PCB 1.3E-08 6.3E-04 2.2E-09 4.3E-09 8.7E-09 4.4E-04 1.5E-09 3.0E-09
Floodplain Soil PCB 9.7E-08 4.9E-03 1.7E-08 3.3E-08 1.2E-07 6.0E-03 2.0E-08 4.1E-08
c Sediment PCB -- - - - - -- -- -
Bank Soil PCB 6.2E-09 3.1E-04 1.1E-09 2.1E-09 7.6E-09 3.8E-04 1.3E-09 2.6E-09
D Sediment PCB 7.5E-09 3.8E-04 1.3E-09 2.6E-09 5.2E-09 2.6E-04 8.9E-10 1.8E-09
Bank Soil PCB - - - - - - - -
E Sediment PCB 4.7E-09 2.4E-04 8.1E-10 1.6E-09 3.3E-09 1.6E-04 5.6E-10 1.1E-09
Bank Soil PCB 4.2E-08 2.1E-03 7.2E-09 1.4E-08 5.1E-08 2.6E-03 8.8E-09 1.8E-08
F Sediment PCB 0.0E+00 0.0E+00 1.1E-08 2.2E-08 4.3E-08 2.2E-03 7.4E-09 1.5E-08
Bank Soil PCB - - -- - - - -- -
G Sediment PCB 3.7E-08 1.8E-03 6.3E-09 1.3E-08 2.5E-08 1.3E-03 4.3E-09 8.7E-09
Bank Soil PCB - - -- - - - -- -




TABLE A-§

REVISED SEDIMENT AND SOIL EXPOSURES, RISKS, AND HAZARDS
HUMAN HEALTH RISK ASSESSMENT
NEAL'S LANDFILL
BLOOMINGTON, MONROE COUNTY, INDIANA

Ingestion Dermal Contact
Location Type Chemical ADD Hazard LADD Risk ADD Hazard LADD Risk
Pre-A Bank Soil PCB 9.1E-06 4.6E-01 7.8E-07 1.6E-06 3.0E-06 1.5E-01 2.6E-07 5.2E-07
Floodplain Soil PCB 3.3E-06 1.6E-01 2.8E-07 5.6E-07 1.1E-06 5.5E-02 9.4E-08 1.9E-07
Sediment PCB 7.3E-07 3.7E-02 6.3E-08 1.3E-07 1.2E-07 6.2E-03 1.1E-08 2.1E-08
A Bank Soil PCB 1.3E-06 6.6E-02 1.1E-07 2.3E-07 44E-07 2.2E-02 3.8E-08 7.5E-08
Floodplain Soil PCB 2.0E-06 9.9E-02 1.7E-07 3.4E-07 6.6E-07 3.3E-02 5.6E-08 1.1E-07
B Sediment PCB 7.9E-08 4.0E-03 6.8E-09 1.4E-08 1.4E-08 6.8E-04 1.2E-09 2.3E-09
Floodplain Soil PCB 6.1E-07 3.1E-02 5.2E-08 1.0E-07 2.0E-07 1.0E-02 1.7E-08 3.5E-08
c Sediment PCB -- -- - -- -- -- -~ --
Bank Soil PCB 3.9E-08 1.9E-03 3.3E-09 6.7E-09 1.3E-08 6.5E-04 1.1E-09 2.2E-09
D Sediment PCB 4.7E-08 2.4E-03 4.0E-09 8.1E-09 8.0E-09 4.0E-04 6.9E-10 1.4E-09
Bank Soil PCB -- -- -- - - - -- -
E Scc_liment PCB 3.0E-08 1.5E-03 2.5E-09 5.1E-09 5.0E-09 2.5E-04 4.3E-10 8.6E-10
Bank Soil PCB 2.6E-07 1.3E-02 2.3E-08 4.5E-08 8.8E-08 4.4E-03 7.5E-09 1.5E-08
F Sediment PCB 3.9E-07 2.0E-02 34E-08 6.8E-08 6.7E-08 3.4E-03 5.7E-09 1.1E-08
Bank Soil PCB -- -- -- - -- - -- --
G Sediment PCB 2.3E-07 1.2E-02 2.0E-08 3.9E-08 3.9E-08 2.0E-03 3.4E-09 6.7E-09
Bank Soil PCB - -- -- -- -~ -- -- --
Notes:
- = Not calculated
ADD = Average daily dose (mg/kg-day)
LADD = Lifetime average daily dose (mg/kg-day)
mg/kg-day = Milligram per kilogram per day
PCB = Polychlorinated biphenyl
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Creek chub Semotilus atromaculatus from two PCB contaminated streams (Clear Creek and
Richland Creck) at three locations and a reference stream (Little Indian Creek), Indiana,
U.S.A., were examined to determine if age class structure and growth vanables were correlated
with in-situ PCB exposure. Approximately five to 15 fish were captured weekly during the spring
spawning season and monthly thereafter for a 12 month period. Fish collected ranged from 25 to
267 mm total length (Ly). Throughout the course of this study, no spawning activity was observed
at cither location in Clear Creek, although some very small young-of-the-year (YOY) creek chub
fry were observed at the downstream location by late summer. Creek chub nests were observed in
both Richland Creek and Little Indian Creek but YOY were common only in Little Indian Creck.
Exposure to PCBs was shown to both enhance and decrease growth in varied laboratory tests;
subtle but significant gender-specific differences in the growth of creek chub populations between
the sites were observed. Creek chub up to 24 months in age from Clear Creek and Richland Creek
were significantly larger (both L and mass for males and Ly for females) than reference site creek
chub. This trend was reversed for creek chub aged >24 months as the reference site fish were
consistently larger with reference males weighing significantly more. Older age classes of creek
chub were missing in areas of higher PCB contamination. Female population growth rates and
individua) instantaneous growth rates were consistently higher at the reference site in comparison
to the PCB-contaminated sites. Calculation of ‘functional " (as a condition factor) did indicate
that growth enhancement in young males did occur at the most contaminated site and reductions
in prowth (mass relative 10 L1) occurred in females from all contaminated sites. Furthermore, long-
term survivorship for females was reduced in the PCB-contaminated streams. All of these subtle
alterations in growth would not have been observed if males and females had not been analysed

separately. + 2006 The Fishenes Society of the Brush tstes

Key words: age structure; growth: PCBs: Semotilus atromacularus, sex differences.

INTRODUCTION

The first decade of laboratory research on the effects of commercial mixtures
of polychlorinated biphenyls (PCBs) on aquatic organisms focused on
classical toxicity testing (Hansen et al., 19744, b. 1975; Nebeker & Puglisi, 1974;

tAuthor to whom correspondence should be addressed. Tel.: +1 812 855 4672: fax: +1 812 835 7802;
email; dhenshel@ indiana.edu
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Nebeker er al., 1974; Schimmel et al., 1974; DeFoe ef al., 1978). As part of these
studies, both growth enhancement and growth reduction were often observed
(Nebeker er al., 1974; Hansen et al., 1976; DeFoe e1 al., 1978; Mauck et al., 1978;
Bengtsson, 1980; Mac & Seelye, 19814, b). Growth reduction has been typically
identified as ‘wasting away’ leading to death (Halter & Johnson, 1974;
Bengtsson, 1980; Cleland er al., 1988). Bengtsson (1979) stated that artificially
stimulated growth is not a benefit, rather it is an adverse effect. Although he did
not understand the underlying mechanism of this growth enhancement,
Bengtsson (1979) noted that thyroid hormones regulate fish growth.
Much research has documented that PCBs alter thyroid hormone (T) levels in
a variety of fish species (Mayer et al., 1977; Leatherland et al., 1978; Fingerman
& Russell, 1980; Besselink et al., 1996; Palace er al., 2001; Brown et al., 2004)
although the pattern of whether T; or T, is more affected, and the dynamic
changes in response to dose and over time seems to be complex and variable by
species.

Great strides have been made in understanding the sublethal effects of PCBs in
the past 25 years including the relationship between the toxicity of dioxin
(Walker et al., 1991, 1994; Wright & Tillitt, 1999) and the dioxin-like properties
of some congeners of PCBs (Ankley et al., 1991; Van den Berg et al., 1998). The
main focus of this research effort, however, has been on reproductive success and
the mode of toxicity of dioxin and dioxin-like PCBs (Cantrell et al., 19984, b:
Thomas, 1999). Perhaps this is due in part to Niimi (1992) who concluded that
there are no acutely toxic problems associated with environmental concentra-
tions of PCBs because fishes do not accumulate lethal concentrations of PCBs
anymore. While this generalization may be accurate for most of North America,
given the lack of in-depth field studies present in the literature, this position is
questionable. More recently, Black et a/. (19984, b) not only documented repro-
ductive effects in mummichog Fundulus heteroclitus (L.) from the New Bedford
Harbor Superfund site (MA, U.S.A.), but also documented reduced survivorship
in older females which correlated with total PCB concentrations. Subtle but
serious effects can still be found in field situations and in the laboratory at
environmentally relevant PCB concentrations (Monosson et al., 1994). A com-
prehensive investigation of creek chub Semotilus atromaculatus (Mitchell) was
initiated because 1t is common throughout eastern North America and is known
to be present in many streams in Indiana that are highly contaminated with
PCBs (IDEM, 2004). The objective of the study seek was to determine if age

class structure and growth endpoints are sensitive indicators of adverse impacts
relative to ambient PCB concentrations.

MATERIALS AND METHODS

SITE DESCRIPTION

Lemon Lane Landfill (LL) and Neal's Landfill (NL) are National Priorities List
(Superfund) sites located in Monroe County, Indiana, U.S.A. Creek chub were
collected from Clear Creek (CC) at two locations downstream of the primary
discharge of PCB-contaminated groundwater emanating from LL. Clear Creck |

« 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006. 68, 44-62
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(CC1; drai age area 5-96 km?; 39° 10/ N; 86° 33’ W) was located 1400 m downstream
and CC2 lrainage area 16-32 km?;, 39° 9' N; 86° 32’ W) was located 3100 m
downstream -f the LL discharge springs. Conard’s Branch and Richland Creek
(CB) (drainag, area 8-03 km~ 39° I1' N; 86° 39’ W) were also sampled c. 800 m
downstream of the primary discharge of PCB-contaminated groundwater emanating
from NL. The reference site for the study was on Little Indian Creek (LI; 39°0 N;
86° 41’ W) just upstream of its confluence with Indian Creek (drainage area
27-45 km~). All four sites are in the White River drainage, Monroe County,
Indiana, U.S.A. (Fig. 1). Some qualitative habitat characteristics for these sites are
given in Table I. Over the course of many years, hundreds of samples have been
collected from these study sites and chemically analysed for hazardous substances,
including PCBs. Sample types included: groundwater at the source spring, ambient
surface water at various downstream locations, sediment and whole creek chub
(Table 11). 1t was clear from the data collected that PCBs were the only significant
bioaccumulating contaminant of concern at CCl, CC2 and CB study sites (ISDH,
1994). Only very low concentrations of PCBs are found in fish at LI, confirming that
this site is suitable to represent background conditions for south-western Indiana.

EXPERIMENTAL DESIGN AND FIELD COLLECTION

Monthly collection, of five to 15 individual creek chub were conducted between April
1999 and April 2000 at all sites, usually within 24 h, during daylight hours using a battery
back-pack pulsed-DC electrofishing unit capable of 2-3 A output. Fish were collected
weekly during reproductive time (April to June) periods and semi-monthly during non-
reproductive periods (July to March). Fish were collected and placed into a live well until

the conclusion of the sampling zone. Creek chub were preserved in 10% formalin for
future laboratory work.

‘ Capacitor
PCBs Purchased Plant site

Little Indian Creek

eal's Landfill Lemon Lane Landfill Indian Creek
Conards Branch Clear Creek
East Fork White River

Richland Creek
West Fork White River @
FiG. 1. Schematic of PCB study sites, Monroe County. IN, U.S.A.

« 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 68, 44-62



CREEK CHUB AGE AND GROWTH 47

TasLe 1. Habitat characteristics of the study sites

CCl1 CB cC2 LI

Source of PCBs Lemon Lane LF Neal's LF Lemon Lane LF Reference site
Drainage area (ha) 600 800 1600 2700
Substratum types (%) Sand (40), Silt (25), Sand (35), Sand (5),

gravel (35), gravel (25), gravel (30), gravel (20),

cobble (20), cobble (20), cobble (15), cobble (60),

boulder (5) bedrock (30) boulder (15) boulder (5),

bedrock (10)
Land use Urban and residential ~ Agricultural Urban and industrial ~ Agricultural
Habitat Forested corridor Forested corridor  Pasture and forested  Forested corridor
corndor

Stream width (m) 2 4 3 6-5

CC1, upper Clear Creek; CB, Conards Branch and Richland Creek; CC2, lower Clear Creek; LI,
Little Indian Creek.

AGE AND GROWTH METHODOLOGY

Preserved creek chub were rinsed in tap water, blotted dry, and whole masses (Mp)
were measured to the nearest 0-1 pg. Total length (L;) was measured to the nearest
0-1 mm from the anterior most part of the fish to the longest caudal fin ray length by
depressing the caudal lobe dorso-ventrally (Anderson & Gutreuter, 1989). A scale sample
was obtained above the lateral line, anterior to the base of the dorsal fin for ageing by
counting annuli (Jearld, 1989) using a Leica MZ12-5 stereomicroscope equipped with an
ocular micrometer and transmitted light using dark field hghting. The age of 586 fish
from all sites, including age 0 year fish, was determined. The Dahl-Lea method (a direct
proportion basis) was used to determine backcalculated Lr-at-age (Lagler, 1956). A total
of 474 creek chub were > age 1 years and were included in the backcalculation of size at
successive annuli (Ricker, 1975). Ordinary and functional » (slope, condition factor)
regresstons were calculated (Ricker, 1975) according to the following formulae:
Mp = al,’} or log,y Mg =logyy a + b log,y Ly. where Mg is in g, Lt in cm and
a = the intercept. Ricker (1975) states that ‘usually the best available estimate of the
growth rate of individual fish (G) comes from the back-calculation of their length at the
last two annuli on the scales.” Individual instantancous growth rate of length increase was

TapLe 1. PCB concentrations (ranges and means + s.p.) in various media at the study

sites
CCl CB cC2 LI

PCB groundwater 5470 0-1 8-7 5470 NA
concentrations at {Tewra Tech. 2001) (Tetra Tech. 2000) (Tetra Tech, 2001)
source (ppb)
Ambient water at study -1 (USEPA. 1992) 0-46 (CBS. 1998) < 1-0 (USEPA. 1992) NA
arca (ppb)
Sediments (ppm) 1-0 (USEPA. 1992) 0-29 (USEPA. 1992)

4-3 (Normandeau. 19953) 1-87 £ 093, 7 = 5 0-38 (Normandeau. 19953) NA

217 +026.n=13 (CBS. 1998) 056 +0014.n =35

(Westnghouse. 1997) (Westinghouse. 1997)
Creek chub 192+ 32 n=9 1221+ 31.n=8 211202 n=9 0-01 £ 0-00.n=6
{whole bedy. ppm) {Wesunghouse. 1997) (CBS. 1998) (Westunghouse. 1997) (USFWS, unpubl.

data)

CC1, upper Clear Creek; CB, Conards Branch and Richland Creek. CC2, lower Clear Creek; LI,

Little Indian Creek; ppb. parts per billion; NA. not analysed; ppm. parts per million; n, number of
samples analysed.
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calculated for each age class interval available at the study sites (Ricker, 1975) according
to the following formula: G = b(In Ly, —In Ly,), where G = individual instantaneous
growth rate of Ly increase, b = is the calculated functional b for that age class,
L1, = the backcalculated Lt of the fish at the second to last annuli, and
L1, = the backcalculated Lt of the fish at its last annuli. Population instantaneous
growth rate of Ly increase (G,) was obtained by comparing the mean size of surviving
fish at successive ages in the same manner (Ricker, 1975). All calculations were initially
conducted with males and females together, a common practice despite the fact that creek
chub are sexually dimorphic. When it was determined that there were differences in

survivorship between the sexes, all analyses were redone separately for both males and
females.

STATISTICS

All statistical analyses were done using SAS (SAS Institute Inc, Cary, NC, U.S.A)).
Total length and Mg were correlated to age (determined by year and by month) using
PROC REG, a general purpose procedure for linear regression. PROC GLM (accepting
an imbalanced design for the ANOVA) was used to evaluate significant differences
between the sites. For the data determined by year, a variable for season collected
(SEASON: April to June, spawning; July to September, postspawning; October to
December, autumn; January to March, prespawning) was also included in the
ANOVA. For this analysis 1 April of cach year was assumed to be the estimated hatching
date of creek chub. In addition to statistically analysing these data using age derived in
years, age was also determined in months and the seasonality was then represented by

Julian calendar date collected JDATECOL). All graphs were created in Excel (Microsoft
Corp.).

RESULTS

Equations for My and Lt regressed on age (in years) are presented for males
and females for the study sites in Table I11. The slope (b) of the mass and age
equations for both males and females decreased with increasing mean PCB
concentration in fish previously collected at these sites (Table III). The older
age classes, especially females, were missing {rom the contaminated sites as
evidenced by Lt-at-age and Myg-at-age figures (Fig. 2). For males. both Lt and
My were significantly increased at the PCB sites for creek chub <24 months in
age (Ly, P < 0-001-0-05; Mp, P < 0-02-0-04). Only Lt was significantly
increased for females <24 months of age (P < 0-001-0-03). By age 2 years,
there were no significant differences between the size of creek chub between
these sites. By age 3 and 4 years, the male creek chubs from the reference site (LI)
weighed significantly more than fish from the PCB-contaminated sites
(P < 0-001 -0-04). Age 3 years females also followed this trend, however these
differences were not statistically significant (Fig. 2). At the reference site, males
weighed significantly more than females in years 2 (P = 0-06), 3 (P = 0-05) and
4 (P < 0-001). There were no significant differences in Mg between males and
females in any age class from the PCB contaminated sites.

Fish <40 mm in size (representing early age 0 year fish) were below expected
frequencies in the PCB-contaminated streams (Fig. 3). This was not based on
electrofishing gear bias because complete coverage was achieved in these streams
during sampling. The sites were thoroughly examined for spawning activity.
Creek chub successfully spawned at LI and CB. but not at CCL Although
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49

CREEK CHUB AGE AND GROWTH

ElH AR [HUET
I d

Y9017 1B3[D) 1amMo] ‘7DD 381D PUR[YIRY PUE YoUurRIg SPIRUOD gD '§321D JFID saddn ‘[0 1ysa1) uvipuy NI 11

(£8:0 = 4 100:0 > d)  SE9p + X gp:S€  (TL:0= 41000 >d) 9Tyl = Veyic W TOD
(IL-0 = 41000 > d)  1t-6€ + X 9p-9€  (L9-0 = 4 '100:0 > d) 81§ — Y 6l-vl W 510)
(290 = ;4 '100:0 > d)  91-05 + X L1-0€  (pS-0 = 1000 > d) LL€—X99:Z1 W 10D
(08:0 = .4 1000 > d)  9T-LE + X Ts8E (TS0 = 471000 > d) Tl -Xx790z W I17
(0L-0 = ;4 '100:0 > d)  Thvy + X 65v€  (85:0 = 41000 > d) v6-C — X 89-01 e o)
(09:0 = ;£ ‘100:0 > d)  vp-9¢ + ¥ 18-9¢ (LS-0 = 4 ‘1000 > d) £6:T — X TP6 4 a0
(690 = . ‘1000 > d) 0815 + X 1697  (59-0 = #1000 > d) 0p-0 + ¥ TL9 4 100
(280 = 4 °100:0 > d)  vT-6€ + X L61€  (pL-0 = 47100-0 > d) 80-L — X pT-€1 d 11

L7 94 Xag AU

X3S put Js

Aq (s1eak ‘x) 28e yum (unu “L7) {p3ud] [P101 pue (8 *9py) ssew Apoq 10j suonenbd uoissdIBay ‘[ 31AVL

« 2006 The Fisheries Society of the Bntish Isles, Journal of Fish Biology 2006. 68, 4462



50 D. S. HENSHEL ET AL.

150
@ 801w

125 "
«| 60
50
- H 0
2 i

1R R il = H
Ll B N R -
0! e A - 0!

—
=3
(=1
E

Mean My, (g)
=3
1=,
*

o
(=3

]

200
180 d) N
160
140
120
100
80 1
60 1
40
20
0

Age (years)

F16. 2. Creek chub mean (a) male and (b) female masses, and (c) male and (d) female total length at Little
Indian Creek (W), upper Clear Creek (). Conards Branch und Richland Creck (@) and lower
Clear Creek (E). * significant differences from reference site (Little Indian Creek) at P < 0-05.

creek chub spawning was not specifically observed at CC2, juveniles were
observed in this location by mid-summer. The reduced numbers of larger fish
at the PCB contaminated sites are also indicated in Fig. 4.

Instantaneous growth rates and mean calculated Lt at successive annuli are
given in Tables IV and V. Within all of the age classes of females, both popula-
tion and mean individual G were higher for the reference site (L1) fish. For
males, G did not appear to have clear trends.

Mass and Ly relationships are shown in Tables VI and VII. Based on func-
tional b values, 1t appears that growth enhancement (i.c. high mass relative to
Lt) was occurring in CCl males, the most contaminated site studied. For
females at CCl, the exact opposite was true (i.c. reduced mass relative to Ly).
Reference females from LI exhibited an increased mass relative to Ly when
compared to females from all other sites.

DISCUSSION

Carlander (1969) presented summaries of published creek chub data from
many sites in North America and stated that creek chub grow most rapidly in
the mid-west. Overall, the Lt and My of creek chub from these four study sites
were similar to the calculated mean Mgy for creek chub age classes from MN, 1A,
NY, AL, MD and OH (Carlander, 1969) although sexes were combined for this
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FiG. 3. Creek chub total length frequency comparisons for Little Indian Creek (BM) and (a) upper Clear
Creek (£D. (b) Conards Branch and Richland Creek (8) and (c) lower Clear Creek (E2D.
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Fic. 4. Comparison of creek chub mean mass at 10 mm total length intervals between a North American

mean (Carlander, 1969) (7). Little Indian Creek (W) and (a) upper Clear Creek ([]). (b) Conards
Branch and Richland Creek (B8 and () lower Clear Creek (E3).
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TasLE VI. Male mass and total length regressions by age class

Regression
Means slope (b)
Functional
Age logyy logyo intercept
Site (years) n Lt Mg Ordinary Functional s.D. logip a
LI 1 20 1-85 0-62 3-00 3-03 0-22 —5-00
LI 2 15 207 125 3-02 3-04 0-22 —5-04
LI 3 5 218 161 298 3-01 0-28 —4.95
LI 4 3 231 201 2-87 2-87 0-29 ~4-61
LI 5 1 225 184
LI all 1+ years 2:00 107 3.02 3-03 0-44 ~5-00
unweighted
LIall 1+ years 213 1-46 3-05 3-06 0-49 —-5-05
weighted
CCl 1 54 191 0-82 2:72 3-20 0-24 —5-28
CCl 2 18 205 125 3-26 3-43 0-15 —-5-80
CC1 3 7 214  1-50 3-13 3-28 0-16 —-5-51
CCl 4 2229 192 2-68 2:68 ~4:21
CCl 5 0
CCl all 1+ 1.97  1-00 2:86 2:93 0-31 —4-96
years
unweighted
CClall 1+ 210 1-37 2-88 2-94 0-43 —-4-67
years weighted
CB 1 17 193 0-83 297 3-00 0-22 -5-10
CB 2 15 204  1-17 314 316 0-36 -5-10
CB 3 5 216 1-58 2-66 2-66 0-10 —3-44
CB 4 1 225 1-83
CB S 0
CBall 1+ 2:08  1-33 310 3-12 0-35 -5-17
years
unweighted
CBall 1+ 1-97  0-97 312 312 0-42 -5-17
years weighted
cC2 1 31 192 0-89 2-90 3-11 0-27 —5-08
cC2 2 21 203 1-23 2:97 3-03 0-18 -4-93
cC2 3 12 217 1-64 2-81 2-87 0-13 —4-59
cC2 4 20225 192 3-70 3-70 —6-43
cC2 5 1 228 199
CC2all 1+ 2:01 118 2-95 3-01 0-33 -4-90
years
unweighted
CC2all 1+ 2-13 1-33 3-06 3-07 0-41 —5-01

years weighted

LI Little Indian Creek; CCl, upper Clear Creek: CB, Conards Branch and Richland Creek: CC2,
lower Clear Creek; n. number of individuals; My, mass (g); Ly, total length (mm); s.p.. from the
predictive regression line of log,q Mg on log ¢ L.
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CREEK CHUB AGE AND GROWTH 57

comparison (Fig. 4). Creek chub from Manitoba grew slower than in the present
study but perhaps lived slightly longer (Moshenko & Gee, 1973). Creek chub are
sexually dimorphic, so combining male and female creek chub data for routine
fish population analysis can make it impossible to detect subtle adverse effects,
especially if the contaminant in question impacts the sexes differently as PCBs
appear to do.

In ideal conditions, male creek chub continue to grow in Lt and My as they
age, although the rate of mass gain outpaces gains in Ly as fish age. Although
female creek chub continued to gain mass as they aged, gains in Lt were not as
pronounced as they were in males. This was probably due to the physiological
energy demands of egg production. When the My and Ly relationships were
examined with the sexes combined, no trends in the data were observed. The
relationships for males and females analysed separately, however, indicated the
possibility of differences between PCB contaminated creek chub and reference
site creek chub. Generally, a functional regression value of 4 equal to 3-0
indicates isometric growth. Higher values of b indicate better ‘condition’ or a
more rotund fish (Ricker, 1975; Anderson & Gutreuter, 1989). Lower values of b
would indicate less mass being added by the fish as length increased. In extreme
cases, low b values would indicate emaciation. In this study, functional b for
reference site males within age classes 1+ to 3+ years, was ¢. 3-0 (range: 3-01-
3-04), whereas for reference females within age classes 14 to 3+ years, the
functional b range was somewhat higher (3-10- 3-26). Combining these clearly
different mass and length relationships gives ample opportunity for masking
subtle growth changes. At the most contaminated site (CC1), male fish in age
classes 1+ up to 3+ years were heavier for the same Ly than reference males
{bh range: 3-20-3-43). Not only was this indicative of a growth enhancement, but
it also appeared to obscure the sexual dimorphism in creek chub. By contrast,
female fish in age classes 1+ up to 3+ years at CC1 had a decreased Mg and Lt
relationship (b range: 1-48-2-88) compared to 1+ up to 3+ year females at the
reference site, or any other site, or even compared to males of those age classes at
any other site. In older age classes (3+ and 4+ years) {unctional » appeared to
decline more quickly at the most PCB contaminated sites, especially in females.
This appears to be a subtle indicator of the *wasting’ syndrome reported by
others (Halter & Johnson, 1974; Bengtsson, 1980; Cleland et «l., 1988). The year
to year growth companson is made more difficult by the loss of the older age
classes at the contaminated sites [loss of age 5 years in males, and ages 4 and 5
years (and even age 3 years at CC2) in females].

Although the data show a trend toward larger size of the 1 year old fish from
the PCB-exposed populations, this trend disappears beyond 2 years of age.
Beyond age 2 years, both Lt and My of male creek chub were reduced at the
contaminated sites when compared to males from the reference site. Several
studies have shown that growth of larvae and juvenile fishes can be enhanced
at low doses of PCBs (Bengtsson, 1979, 1980). The lower growth rate in younger
age class males at the LI reference site compared to the males at the contami-
nated sites (CC1 in particular), however, could possibly be related to increased
competition due to species diversity and the presence of piscivorous fishes. Katz
& Howard (1955) documented that creek chub grew better in a polluted but
recovering zone of Lytle Creek. OH. U.S.A. rather than upstream of the sewage

+ 2006 The Fisheries Society of the British Isles. Journal of Fish Biology 2006. 68, 4462



58 D. S. HENSHEL ET AL.

discharge. Although the types of contaminants present were not specified, nutri-
ent enrichment and a lack of competition and predators probably contributed to
this increased growth. No fish larvae were ever observed at CCl, and no creek
chub spawning activities were ever observed at either Clear Creek site (unpubl.
obs.). It is notable that the loss of the older age classes was more pronounced for
females compared to males. Thus, while PCB contamination seemed to affect
both ends of the age spectrum (reduced or no spawning, enhanced growth at
early ages, wasting and loss in the older age classes), the severity of the impact
for each part of the age spectrum was gender-specific.

The creek chub makes an excellent field study species since it is relatively
abundant and present in many PCB contaminated streams. Laboratory stud-
ies have shown growth to be a sensitive endpoint in PCB feeding studies of
fish, but these effects are not as easily observed in field studies. Despite the
large sample size, many other variables may obscure the subtle effects of
PCBs on growth. Even though no spawning was observed at CCl, creek
chub were probably present due to in-migration from nearby uncontaminated
tributaries. Creek chub have been observed to rapidly repopulate areas
(Olmsted & Cloutman, 1974). The immigration of young fish does complicate
the interpretation of these field observations. Nevertheless, it is expected that
most of the fish captured within these study areas had spent the majority of
their lives at these locations. Another complicating factor is that rarely has
an attempt been made to compare current fish densities of streams to what is
expected. Larimore (1955) documented the presence of >28 kg ha™' of four
minnow species [Campostoma anomalum (Rafinesque), Ericymba buccata cope,
Pimephales notatus (Rafinesque) and Semotilus atromaculum (Mitchill)] from
a small stream in Uinois, U.S.A. This equates to ¢. 17 000 fish from a 500 m
stretch of stream. There was no attempt to evaluate fish densities. Unless
there is widespread indiscriminate mortality that either significantly alters
fish species diversity in a stream or destroys the population, subtle adverse
effects may be hard to document.

Despite the difficulty in detecting contaminant effects using classic fish ecol-
ogy methods, trends are apparent in the PCB growth enhancing effects in fish
prior to 24 months of age and the ultimate reduction of growth and survival in
creeck chub when sexes are analysed separately. These PCB study areas have
reduced age 0 and > age 3 years fish which is consistent with Bengtsson’s (1979)
observation that juveniles are more durable than older and younger fishes
(larvae and fry). The early mortality of older females from the PCB-contami-
nated sites 1s also consistent with observations made by Black er «l. (1998b) in
mummichog from New Bedford Harbor. Even though the present results on age
structure and growth variables at these PCB-contaminated sites are consistent
with other laboratory and field research, these routine field evaluation meth-
odologies do not indicate what may be happening in the environment. To
determine the effects of PCBs on native fish populations more fully, an in-

depth investigation into physiological health of individuals of the population is
imperative.
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